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ABSTRACT

De novo mutations, a consequence of errors in DNA
repair or replication, have been reported to accumu-
late with age in normal tissues of humans and model
organisms. This accumulation during development
and aging has been implicated as a causal factor in
aging and age-related pathology, including but not
limited to cancer. Due to their generally very low
abundance mutations have been difficult to detect
in normal tissues. Only with recent advances in DNA
sequencing of single-cells, clonal lineages or ultra-
high-depth sequencing of small tissue biopsies, so-
matic mutation frequencies and spectra have been
unveiled in several tissue types. The rapid accumula-
tion of such data prompted us to develop a platform
called SomaMutDB (https://vijglab.einsteinmed.org/
SomaMutDB) to catalog the 2.42 million single nu-
cleotide variations (SNVs) and 0.12 million small in-
sertions and deletions (INDELs) thus far identified
using these advanced methods in nineteen human
tissues or cell types as a function of age or envi-
ronmental stress conditions. SomaMutDB employs
a user-friendly interface to display and query so-
matic mutations with their functional annotations.
Moreover, the database provides six powerful tools
for analyzing mutational signatures associated with
the data. We believe such an integrated resource
will prove valuable for understanding somatic mu-
tations and their possible role in human aging and
age-related diseases.

INTRODUCTION

Previous studies of somatic mutations in human tissues have
been mostly focused on tumors (1). As clonal outgrowths,
tumors reflect somatic mutations in the original normal cell
and those added during its clonal expansion after neoplastic
transformation. Patterns of mutation frequencies, spectra
and distribution across the genome vary dramatically be-
tween different cancers and even between different tumours
of the same cancer (2). Thousands of cancers have been se-
quenced, with databases built for facilitating analysis of mu-
tational patterns, sources, and clinical outcomes, e.g. TCGA
(The Cancer Genome Atlas), ICGC (International Cancer
Genome Consortium), COSMIC (Catalogue Of Somatic
Mutations In Cancer), and OncoKB (Precision Oncology
Knowledge Base) (3–6). These databases have been valuable
resources for understanding somatic mutations in tumours
and promoting further basic and clinical research (7).

In contrast to cancers, studying somatic mutations in nor-
mal tissues remains a challenge because each cell harbors
its own unique mutation spectrum. Somatic mutation anal-
ysis requires either single-cell sequencing or surrogate ap-
proaches, such as sequencing clonal outgrowths or taking
advantage of mutation expansion, either through genetic
drift or as a consequence of a growth advantage (8,9). Using
these methods, studies have shown somatic mutations accu-
mulate in normal somatic cells during human aging, and the
speeds of accumulation are accelerated in smoking, UV ex-
posure, and under ulcerative colitis, inflammatory bowel, or
cirrhosis diseases (10–23).

Thus far only one database has been developed for so-
matic mutations in normal cells and tissues, DSMNC (a
Database of Somatic Mutations in Normal Cells) (24). This
database has been updated for the last time on August 2018,
contains somatic mutations in six human tissue types and
does not provide additional, but important analytical tools
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Figure 1. Database construction and content. (A) The structure of SomaMutDB. (B) Illustration of collected data and features.

for mutational signature analysis. Clearly, there is a signif-
icant need for an up-to-date database that catalogues all
publicly available small variants, including single nucleotide
variations (SNVs) and small insertions and deletions (IN-
DELs), in normal somatic cells of humans, with available
tools for analysis of mutational patterns and signatures.

Here, we present SomaMutDB, a database of somatic
mutations in normal human tissues. SomaMutDB cata-
logs 2.42 million SNVs and 0.12 million INDELs identi-
fied in nineteen normal tissues and cell types reported, us-
ing 2838 single cells, clones or biopsies from 374 human
subjects. The database contains (a) an interactive genome
browser to browse mutations across the genome, (b) mul-
tiple user-friendly ways to search mutations of interest and
(c) a computing infrastructure providing six mutational sig-
nature analysis tools, which help users to extract signatures
from their data and comparing them with known refer-
ence signatures from cancers (3,25). We believe that Soma-
MutDB provides a convenient platform to search, browse
and analyze somatic mutations in human normal samples.

MATERIALS AND METHODS

System design and implementation

The webserver of SomaMutDB is built on Nginx (ver-
sion r24-2) and Gunicorn (version 19.10.0; a Python WSGI
HTTP Server for UNIX) with Flask (version 1.1.2; a WSGI
web application framework) (Figure 1A). Mutations and
their annotations are stored in MySQL (version 8.0.25) and

accessed by Flask. The ‘Analysis’ function utilizes SGE (Sun
Grid Engine; version 8.1.9) to manage users’ jobs and is
controlled also by Flask. Jbrowse2 (version 1.0.3) (26) is in-
tegrated to browse somatic mutations and related annota-
tion along the genome. An interactive graphic user interface
was designed with jQuery (version 3.1.0). For access, So-
maMutDB supports many commonly used web browsers,
e.g. Google Chrome, Safari or Firefox.

Data sources

We collected somatic mutations from 24 published studies
that made their somatic mutation data publicly available
(10–23,27–36) (Table 1, Figure 1B). For now, data are lim-
ited to somatic mutations reported for normal tissues and
cells, not for tumors or other abnormalities. This is because
mutation frequencies and spectra of abnormal samples, e.g.,
genetic deficiency, can be significantly different from those
in normal cells. For example, we excluded somatic mutation
data on cells or biopsies of carcinoma in situ from a blad-
der cancer study (15), inflamed colon epithelium of colon
diseases (16,17), liver diseases (19), smokers or ex-smokers
from the bronchial epithelium studies (21), embryo sam-
ples with trisomy 21 (32), and placenta samples with ab-
normal parameters (34). From all selected samples we col-
lected whole-genome and -exome data and re-analyzed se-
quencing data generated from genome amplifications with
the same variant calling pipeline (see Data processing). Be-
sides somatic mutations, we also integrated the annotations
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Table 1. Summary of somatic mutations (as of 12 April 2021)

Tissue/cell type # Individual # Sample # SNV # INDEL

Adipocytes 4 20 22 556 1379
Bladder 100 680 142 537 4324
Blood 19 157 102 693 1490
Bone marrow 2 109 113 877 142
Brain 21 180 59 014 1250
Colon 85 521 1 184 598 52 885
Embryonic stem
cell

3 39 7768 665

Endometrium 28 257 NA 23 585
Fibroblast 22 44 8987 1436
iPSC 3 5 3652 38
Kidney 6 25 37 078 4157
Liver 23 243 271 647 7165
Lung 7 256 311 208 12 719
Placenta 5 106 17 000 1786
Skeletal muscle 8 33 25 653 1807
Skin 16 78 59 293 1669
Small Intestine 13 31 25 821 19
Testicle 1 19 194 NA
Ureter 28 35 23 942 75

of gene and regulatory elements from ENSEMBL (37) and
GENCODE (38), as well as median expression levels of
genes for each normal tissue and cell type reported by GTEx
(39).

Data processing

Sequencing data generated from genome amplifications
were re-analyzed with SCcaller (version 2.0.0) (35). Briefly,
adapter and low-quality reads were trimmed by Trim
Galore (version 0.6.4). The trimmed reads were aligned
to the human reference genome (GRCh37 with decoy or
GRCh38) by BWA-MEM (version 0.7.17) (40). Dupli-
cations were removed using Samtools (version 1.9) (41).
The known INDELs (1000 Genomes Project, phase 1)
and SNPs (dbSNP) were downloaded from public GATK
Google bucket (https://console.cloud.google.com/storage/
browser/gcp-public-data--broad-references). The reads
around known INDELs were local-realigned, and base
quality scores were recalibrated based on known SNVs and
INDELs, both via GATK (version 3.5.0) (42). Germline
heterozygous SNPs and INDELs were identified in their
corresponding bulk whole-genome sequences using Hap-
lotypecaller (GATK quality score ≥30, ≥20× depth and
with dbSNP annotation). Somatic mutations were then
identified using SCcaller based on the amplification bias
estimated from the germline heterozygous SNPs after
filtering out all germline SNPs. We kept somatic SNVs
at ≥20× sequencing depth, and INDELs with ≥30× se-
quencing depth and variant quality score ≥25. Those SNVs
or INDELs reported by dbSNP were filtered out using
snpEff (version 5.0c) (43).

For all collected somatic mutations, we adopted the mu-
tations reported in the original literature except for the fol-
lowing three studies (Table 1). First, in a study on colon (17)
we manually corrected sample ID mismatches. Further, the
publicly available mutations of this study (stored in Mende-
ley Data) were not filtered and we processed the data ac-
cording to the filtering thresholds of its original publica-

tion (read depth ≥ 5× and allele supporting reads ≥ 2).
Second, in two studies by Franco I, et al. (13,14) somatic
mutations were reported at group level, e.g., a young ver-
sus an old group, without sample ID or individual ID. For
mutations reported in these studies, we present data as they
were published in supplementary tables because no further
individual-level information was available.

All reported somatic mutations that had been called
based on the human reference genome GRCh37 were con-
verted to the GRCh38 version using CrossMap (version
0.5.2) (44). Mutations found in small chromosome contigs
were excluded and those in chromosomes 1–22, X and Y in
GRCh38 were kept.

Functional annotation

We performed functional annotations of somatic mutations
using multiple tools. We first annotated the somatic muta-
tions using the Ensembl Variant Effect Predictor (VEP, ver-
sion 102) (45). Among the multiple effects for each muta-
tion, we selected the one that was most impactful by setting
‘pick order’ as ‘rank,biotype,mane,tsl,appris,length’. The
SIFT and PolyPhen scores for functional effects of coding
mutations were predicted and collected from the annota-
tions. The co-location to regulatory elements was identified
also using VEP. The deleteriousness of somatic mutations
was calculated using CADD (version 1.6) (46).

Mutational signature analysis tools

Mutational signatures are combinations of mutation sub-
types arising from specific mutagenesis processes (3). SNVs
can be classified into six major types: C > A, C > G, C > T,
T > A, T > C and T > G. Considering the neighbouring
bases flanking the substitutions, SNVs can be further di-
vided into 96 subtypes (47). Similar as for SNVs, INDELs
can be divided into 83 subtypes by considering length of
INDELs, affected nucleotides (C or T) and the number of
repetitive elements of the repetitive or microhomology re-
gion when occurring in such a region (48).

SomaMutDB provides six signature analysis tools for
different usages (Supplementary Table S1). Using Muta-
tionalPatterns (version 3.0.1) (49), SomaticSignatures (ver-
sion 2.26.0) (50), hdp (0.1.5) (51), signature tools lib (ver-
sion 0.0.0.9000) (25), and SigProfiler (version 1.1.1) (52)
mutational signatures can be extracted based on one or
more of the following algorithms: non-negative matrix fac-
torization (NMF), principal component analysis, hierar-
chical Bayesian Dirichlet process. Extracted or previously
known signatures can be fitted into a collection of somatic
mutations by MutationalPatterns, signature tools lib, Sig-
Profiler, and mmsig (customized on version 0.0.0.9000) (53)
using non-negative least squares, Kullback-Leibler diver-
gence, simulated annealing, and expectation maximization.
Finally, to compare extracted and reference signatures, co-
sine similarity can be calculated using MutationalPatterns
(49). The reference signatures from COSMIC and Signal
databases were collected in SomaMutDB and are down-
loadable, including mutational signatures from cancers or
those related to environmental mutagenesis (3,25).
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Figure 2. Interactive browsing and searching of SomaMutDB. (A) Overview of the interactive browser using an example of a SNV in the NOTCH1 gene
in human transverse colon. Regulatory features, gene features, gene expression level and detailed information of the SNV are shown in the same webpage.
(B) Screenshots of search functions and results in SomaMutDB. The search results present detailed information of somatic mutations in the TP53 gene.
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Method
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Figure 3. Screenshots of web interfaces of the ‘Analysis’ function. Extract, similarity and fit functions can be selected in ‘Analysis’ webpage. Users’ data can
be uploaded, and default setting of tools can be directly changed on the website. The figures of results can be viewed in the database with job ID through
‘View result’.

RESULTS

Database content and usage

SomaMutDB is a database of somatic mutations dedicated
to storing, browsing, searching and analyzing SNVs and
INDELs obtained by different approaches for detecting so-
matic mutations in normal tissues and cells. In its current
version (as of April 2021; Table 1), SomaMutDB incorpo-
rates 2 417 518 SNVs and 116 591 INDELs from 19 normal
tissues and cell types in 374 individuals. The age of individ-
uals ranges from 0 to 106 years, with 98 embryo samples
(Supplementary Figure S1). Most individuals are between
30 and 79 years old (76.8%). Of all the samples, 47.1% and
50.2% were male and female, respectively. Among the 2838
samples, 390 were whole-genome amplified single cells, 748
were single-cell clones, and 1700 were collected from natu-

ral clones using laser capture microdissection. All the above
information can be downloaded from the database.

In SomaMutDB, somatic mutations can be interactively
browsed and searched in various ways (Figure 2). To browse
somatic mutations, SomaMutDB has an interactive and
user-friendly browser––Jbrowse2 (Figure 2A). Users can
zoom in/out and scroll to any interested regions along the
genome to view mutations in the context of many other ge-
nomic features. To simplify the search, we provided somatic
mutations in different categories, viz., by different sample
types (e.g. T or B lymphocytes from blood) or by loca-
tion (e.g. sigmoid or transverse colons) in each tissue and
cell type. Detailed descriptions and functional annotations
of mutations can be found in the right panel named ‘AT-
TRIBUTES’ after clicking a mutation. For each mutation,
users can query its corresponding sample by checking the
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Figure 4. Re-analysis of public liver data using SomaMutDB. (A) Distributions of 6 major types of SNVs in liver samples from three groups, young and
aged differentiated hepatocytes and young liver stem cells (LSC). (B) Contributions of de novo extracted mutational signatures in the three liver groups
identified by MutationalPatterns using the NMF method. (C) Basepair contributions of two mutational signatures extracted. Signature S1 enriched with
T > C transitions, and Signature S2 enriched with C > A transversions at non-CpG sites. (D) Heatmap of cosine similarities between de novo extracted
signatures and COSMIC signatures (version 3.0). Signature S1 is associated with SBS5, which is an aging signature found in tumors, while signature S2
correlated with signatures SBS18 and SBS36, which are related to oxidative stress. In users’ application, signatures in row and column can be plotted in
the same order as uploaded files provided by the users. (E) An example of ‘Fit’ function: contribution of COSMIC signatures to the liver SNVs estimated
by MutationalPatterns using the strict NMF method.
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‘MF’ column in ‘SAMPLES’ panel. We also provided ge-
nomic feature annotations in the same browser, including
gene features, regulatory features and median gene expres-
sion level of specific tissues.

In addition to the browser, users can search mutations
of interest in the ‘Search’ webpage (Figure 2B). Users can
search somatic mutations according to a gene name, a list of
gene names, chromosome regions and specific types of tis-
sues. We prepared multiple lists of genes with known func-
tions or annotations, e.g., aging, cell senescence, DNA re-
pair, transcription factors, cancer driver genes (3,54–56), to
help users select mutations in a particular list of genes. The
search results include information on the mutations, such
as chromosome, genomic coordinate, genotype, tissue type,
sex and age of donor, gene identity (symbol) and molec-
ular consequence(s). Additional functional annotations of
somatic mutations can also be selected through a button us-
ing gear icon (Figures 2 and Supplementary Figure S2). All
search results can be downloaded for further analysis. Fur-
thermore, users can download the literature sources of each
somatic mutation listed in SomaMutDB.

To help users extract and analyze mutational signatures,
SomaMutDB contains six signature analysis tools (Fig-
ure 3 and Supplementary Table S1). For the ‘Extract’ and
‘Fit’ functions, users can select one signature analysis tool
and upload their customized set of somatic mutations to
our database for signature analysis. Default parameters for
analysis are pre-set according to the manuals of each tool,
which can be customized by users. Analysis jobs will be sub-
mitted to our computing cluster. Users will be noticed by
email when their job is completed and will be provided with
a link to access the results in the same email. The results are
provided as figures with the corresponding data files (illus-
trated in Supplementary Figure S3 and Supplementary Ta-
ble S2), parameters used for analysis and all intermediate
files by analysis tool. Users can also view results using the
‘View result’ function (Figure 3) with job ID in the email.

Case study on signature analysis

To illustrate usage of the ‘Analysis’ function, we present an
example using data in publication (23). First, we uploaded
the raw SNV data in vcf format and corresponding sam-
ple information, and chose NMF method in Mutational-
Patterns tool (set ‘Range of signature number to estimate’ to
‘2:2’). The results computed by SomaMutDB showed that
the relative contribution of C > A mutations is higher in
liver cells from young subjects or in liver stem cells (LSC)
than in the same cell type from aged subjects. Also, the
aged group has more T > C mutations (Figure 4A). Sig-
nature analysis indicates that signature S1 dominates the
aged group and signature S2 is the major pattern for mu-
tations in the other two groups (Figure 4B and C). To com-
pare these two signatures to known cancer signatures, they
were uploaded together with the COSMIC cancer signa-
tures (version 3, without artifact signatures) using the ‘Sim-
ilarity’ function. The results showed that signature S1 is
highly correlated with SBS5 caused by aging and signature
S2 is associated with the oxidative stress-related signatures
SBS18 and SBS36 (Figure 4D). Finally, we uploaded the
SNV matrix data (obtained from the results after the ‘Ex-

tract’ step) and the COSMIC cancer signatures in the ‘Fit’
function and chose the strict NMF method in Mutational-
Patterns tool with default setting. The results showed that
SBS5 contributes more to somatic mutations in the aged
group, whereas SBS18 and SBS36 are more similar to the
young and LSC groups (Figure 4E). Taken together, Soma-
MutDB provided the exact same results as those obtained
independently in our previous publication (23).

CONCLUSIONS AND FUTURE DEVELOPMENTS

Here, we present SomaMutDB, a somatic mutation
database for normal tissues. It features (a) storage of ∼2.53
million SNVs and INDELs in normal cells of 19 human tis-
sues and cell types obtained from whole-genome or -exome
sequencing of single cells, clonal outgrowths or naturally ex-
panded mutations analysed in biopsies; (b) allowing online
browsing for mutations across the genome and searching
for somatic mutations based on functional annotations in
genes and regulatory elements; and (c) deciphering muta-
tional signatures using six powerful signature analysis tools.
SomaMutDB provides a comprehensive data resource and
a set of interactive analysis tools to facilitate genomic re-
search of somatic mutations in normal human tissues and
cell types, which would benefit researchers in studying the
mechanisms of somatic mosaicism during aging or other
conditions. In the future, we will keep adding more somatic
mutations in normal tissues not only based on current sin-
gle cell-based approaches but also using other technologies,
such as Nanorate sequencing (57). We believe that Soma-
MutDB will be of broad interest to researchers working on
somatic mutations of normal tissues.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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